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First order perturbation considerations are applied to general orthoaxial ehromophores. 
These contain monatomic or linear ligands which are so positioned around the central ion that 
Cartesian coordinate axes can be placed through the ligands. The zero order functions used 
are the orbitals of the partially filled shell which are proper basis functions of the regular 
octahedron and can be thought of as general molecular orbitals of a particular regularly 
octahedral ckromophore. Certain degeneracies not demanded by the proper chromophoric 
symmetry are rationalized in terms of the holohedrized symmetry, which also determines the 
number of parameters required for the full parametrization. All the results obtained are, 
apart from a minor correction given explicitly, formally equivalent to those obtained earlier 
using the angular overlap model and the electrostatic model. The extra correction required in 
the present more general treatment is probably unimportant in view of idle approximations 
involved, in particular that of using a basis restricted to five orbitals. 

StSrungsbetrachtungen erster Ordnung werden anf orthoaxiale Chromophore angewandt. 
(Einatomige oder lineare Liganden sind so um das Zentralion angeordnet, dab die Achsen 
eines Cartesischen Koordinatensystems dutch die Liganden gehen.) Als Funktionen in nullter 
Niherung werden die Orbitale der teilweise gef611ten Schale benutzt, die Basiseigenfunktionen 
des regul/iren Oktaeders sind and die man sich als allgemeine MO's eines speziellen regul/ir 
oktaedrischen Chromophors vorstellen kann. Gewisse Entartungen, die nicht dutch die 
Symmetric des Chromophors hervorgerufen werden, werden in Ausdriicken der tIoloeder- 
symmetric erkl/irt, die auch die Zahl der Parameter fiir die voile Parametrisierung bestimmt. 
Nit einer geringen Abweichung sind alle Ergebnisse formal iiquivalent zu denen des ,,angular 
overlap" und des elektrostatischen Modells. Die besondere Ab/inderung in der vorliegenden 
allgemeineren Behandlung ist vermutlich unwesentlich im tIinbliek auf die enthaitenen 
N/~herungen, besonders bei Benutzung einer auf fiinf Orbitale eingeschr~nkten Basis. 

La m6thode des perturbations du premier ordre est appliqu6e aux ehromophores ortho- 
axiaux, ne eontenant que des ligandes, atomiques ou lin6aires, sur des axes cart6siens de l'ion 
central. Les fonctions d'ordre z6ro sont les orbitales de la couche partiellement oecup6e qui 
sont de fonctions propres de base de l'octa6dre r6gulier, et peuvent 4ire eonsid6r6es comme 
orbitales mol6eulaires g6n6rales d'un ehromophore oota6drique r6gulier. CertMnes d6g6- 
n6reseenees, n'exig6es pas de la sym6trie du chromophore, sont rationalis6es sous termes de 
sym6trie holo6dris6e qui d6termine aussi le nombre de param&tres n6cessaires. Tousles r6sul- 
tats, sauf une correction mineure donn6e explieitement, sont 6quivalents & eeux d6js obtenus 

l'aide des mod61es 61ectrostatique et & recouvrement angulaire. La correction additiormelle 
de la pr6sente m6thode n'est probablement pas importante, vu les  approximations faites, 
sp6eialement la restriction h cinq orbitales de base. 

1. Introduction 
A part icular  class of chromophores is the orthogxial one [12] which consists of a 

central  ion surrounded by  monatomic  or l inear l igands which are so located a round 
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the central ion that a Cartesian coordinate axis can be directed through each 
ligand as a whole, and not only through the ligating atoms. Such ligands might be 
described as linearly ligating. Most of the many well characterized complexes of 
chromium (III), cobalt (III), rhodium (III), and iridium (III) belong, at least to 
a good approximation*, to this class of chromophores which has been studied 
extensively before [I, 2, 3 p. i06, 4, 5, 7, 8 p. ~23, II, 12, 16, 17, 18]. 

In a recent paper [12] it was discussed on the basis of the angular overlap model 
[9, I0, 13] which is a first order perturbation treatment [13] based on LCAO-MO 
ideas. A general orthoaxial chromophore was considered here [12] and the concept 
of the holohedrized symmetry (v.i.) introduced. 

In all the earlier papers the one electron energies have been obtained by 
different perturbation treatments using, as it seems, quite generally, the hydro- 
genie angular functions for the calculations providing coefficients to the radial 
integrals which have served as semiempirical parameters. 

In the present paper, instead of using functions which are products of hydro- 
genlc angular functions (i.e. with a spherical basis) and unspecified radial func- 
tions, we take as our zero order functions such functions as are characterized and 
limited only by their transformation properties under the octahedral group Oh 
(i.e. w i t h  a cubic  basis).  

2. Basis for Estimation of Orbital Energy Parameters. 
Zero Order Functions 

L e t  us cons ider  a six c o o r d i n a t e d  o r t h o a x i a l  c h r o m o p h o r e  cons i s t ing  o f  t h e  

cen t r a l  i on  M a n d  t h e  l igands  A, B, C, D, E, a n d  F .  W e  m a y  n o w  as sume  t h a t  we 

h a v e  m a d e  a s e l S c o n s i s t e n t  f ield H a r t r e e - F o c k  ca l cu l a t i on  on t h e  r e g u l a r l y  

o c t a h e d r a l  c h r o m o p h o r e  MXs, say,  whe re  X m a y  or  m a y  n o t  be  e q u a l  to  one  o f  

t h e  a b o v e  m e n t i o n e d  l igands .  

H o w e v e r ,  for  t h e  p a r a m e t r i z a t i o n  to  be  desc r ibed  be low  i t  is n o t  i m p o r t a n t  

t h a t  such  a H a r t r e e - F o c k  ca l cu l a t i on  can  be  done  a t  all  a n d  we shal l  f ind i t  m o r e  

c o n v e n i e n t  to  t h i n k  of  M X  6 as a cub ic  a v e r a g e  o f  M (ABCDE~'). This  is poss ible  

because  t h e  p a r a m e t e r s  desc r ib ing  t h e  d e v i a t i o n  f r o m  cubic  s y m m e t r y  m u s t  in  

a n y  case be  t a k e n  f r o m  e x p e r i m e n t s .  

T h e  o rb i t a l s  o f  t h e  p a r t i a l l y  fi l led MO shells,  wh ich  in  an  L C A O - M O  descr ip-  

t i o n  w o u l d  be  in  t h e  m a i n  cen t r a l  ion  d-orb i ta l s  in  cha rac te r ,  have ,  also in  t h e  m o s t  

gene ra l  case, t h e  s y m m e t r i e s  eg a n d  t2g of  t h e  o c t a h e d r a l  p o i n t  g roup  Oh. A 
p a r t i c u l a r  choice  of  eg o rb i t a l s  can  be  c h a r a c t e r i z e d  b y  h a v i n g  t h e  s a m e  t r ans -  

i 
f o r m a t i o n  p rope r t i e s  u n d e r  t h e  o c t a h e d r o n  as h a v e  ~ (2 z ~ - x z - y~), abbre -  

v i a t e d  (z~), a n d  (x 2 - y~). S imi l a r ly  t h e  t2g orb i ta l s  can  be  classif ied** as (xy), (yz), 

* Ammonia, for example, is assumed to make up effectively a linearly ligating ligand, its 
binding properties being associated practically solely with the ~ lone pair of the ligating atom. 

** Our choice of orbitals is equivalent to that  of G~ISSITH ([6], p. 390), the correspondence 
being tg, s, ~, ~, and ~, respectively. An easy way of finding the relative normalization coeffi- 
cient a of a (2z 2 - x 2 - yS) and x 2 - y~ is to express that  the full eg shell must be totally 
symmetrical under the octahedral group 0~,. As z, x, and y, under these circumstances, are to 
be equivalent, this means that  the coefficient to z~ and x ~, say, in ~he sum of the squares of the 

two orbitals must be the same, or, 4 a s = a 2 + I and consequently a = ~ .  
V3 

12" 
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and (zx). I t  should be emphasized tha t  the orbitals which are labelled here by a 
Cartesian notation, may  be quite general molecular orbitals, and thus not separable 
into radial and angular parts. In  fact, they are lhnited only by  their transforma- 
tion properties under the octahedral group. 

We now assume tha t  the deviation from regularly oetahedral symmetry  can 
be described by  a first order perturbation t reatment  using our above mentioned 
functions, of symmet ry  eg and t2g, which are eigenfunctions of our cubic average 
system, as our restricted basis of zero order functions. This assumption implies 
tha t  both those matr ix  elements of our perturbation which connect our cubic- 
basis orbitals with other orbitals of the same cubic parentage symmetry,  and those 
connecting them with orbitals of a different parentage symmetry  remain of little im- 
portance as far as energy is concerned. Further  it implies that  the interactions bet- 
ween neighbouring ligands are unchanged relative to our regularly octahedral case. 

3. Orbital Energies 
Let us now consider a matr ix  element of our perturbing potential V whose 

form we need not be concerned with except for its sum character which is a 
consequence of our perturbation description. For the (z2)-orbital the diagonal 
matr ix  element is: 

<(z2) [ v ] (z2)) = <(~2) I (v+~ + v-~) + (v+x + v -x)  + 

+ (v+y + v-y)  I (z~)) = ~(z2) I v =  + vx~ + vy01 (z,)) (1) 

where e.g. V +z is the perturbation from the positive z-axis and V zc is the sum of 
the perturbations from the positive and the negative z-axis. I f  these same pertur- 
bations act on the z-axis, their sum will be denoted by  V xc. I t  is always the sum 
of such perturbations of each Cartesian axis which in an orthoaxial chromophore 
is important  in determining the matr ix  elements involving the five orbitals 
(eg and t2a). 

This can be seen from the following argument. A matr ix  element (~ I V I~f} 
where ~ and ~0 are functions with the same parity, will be unchanged on applica- 
tion of the operation of inversion to V (the inversion working on direction as well 
as on position). This means tha t  i f  V is written as a sum �89 V + �89 V, say, and if 
inversion is applied on one of these terms, all matr ix  elements will be unchanged, 
and thus an apparent  center of inversion has been introduced. We have obtained 
the holohedrized symmet ry  [12]. 

This means that  when we are considering only matr ix  elements involving our 
five orbitals mentioned above, or these plus others also of the same, i.e. gerade, 
parity, the concept of the holohedrized symmetry  is applicable to the determina- 
tion of the number of parameters  required for determining the orbital energies. 
Because of the orthoaxiality [12] the lowest possible holohedrized symmetry,  
which corresponds to different perturbations along the three Cartesian axes, will 
be D~h. 

We now consider the matr ix  element ((z 2) I Vxc I (z2)) which by  the decomposi- 
tion of (z ~) into a linear combination of (x 2) and (y~ - z~), a consequence of the 
transformation properties of (z e) under the octahedron, can be written as 

( - �89 (x~) - �89 V~ ( y 2 -  z~) I v~c I - ~ (x~) - �89 V~ (y~ - ~)~ 
= ~ - ~ (z~) - �89 V~ (x~ - y~) I v =  l - 1 (z~) - ~ V~ (x~ - y~)) (9) 
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where a cyclic permutat ion of the labels z, x, y has led to the last expression which 
now involves the perturbation V zc at the z axis. 

On expansion we get: 

((z2) I Vzc ] ( : )>  § ~ <( x ~ -  Y~) I Vzc I @ 2 _  y2)> _~ �89 V~ <(z 2) [ Vzc I @2_ y2)> (3) 

where the last te rm vanishes because of the different transformation properties of 
(z 2) and (x 2 -- y2) under C 4 (z), a transformation which in an orthoaxiM chrom- 
ophore leaves V~c invariant .  Defining <( : )1  V= r ( : ) >  and < ( :  - Y~)t V= ] 
(x ~ _ y2)} as voc and v~c, respectively, we have 

<( : )  I v =  I( : )> = ~ vo~ + ~ v~ (4) 
and similarly 

The expression for the total  diagonal element together with tha t  for the other e a 
orbital, obtained in a similar way, then becomes: 

<( : )  ] V I (:')> = v.c + ~ (v~ + v.~) + ~ ( v ~ +  v~) 
<(x~ - : )  1 V [ (z~ - y %  = ~ (v~ + v~) + v~  + ~ (v~ + v~ ) .  (6) 

For zx we define ((zx) l Vzc I (zx)>-v~c  and ( (zx)  l V y b l ( z x ) > - - v x b ,  and by  
suitable permutations of z, x, y we collect the results 

<(~x) [ V I (zx)> = v~c + v~  + v~, b 

<(yz) I v ! (yz)>-- v~b + v~  + v~,~ (7) 

( (xy )  I V I (xy)> = v,a § v~b + v~,c . 

I f  our orbitals had a spherical basis they could also have served as basis functions 
for a linear point group (C~v or D~oa) with the z-axis as the axis of symmetry.  
The sub-indices used here refer to this situation and pertain to irreducible represen- 
tations of the holohedrized group D~h. 

The only non-diagonal element which is non-vanishing is tha t  connecting (z 2) 
and (x ~ - y2) both having the same (ae) symmetry  in the holohedrized D~h group. 
As seen above, the V zc gives no contribution, but for V xa we get 

< ( : ) ]  v =  1 ( :  - : ) >  = < - ~ ( : )  - ~ r ( : -  : ) 1  vx~ I- 
- �89 (y~ - z ~=) + �89 I/3 (x2)> (8) 

= < - ~ ( : )  - �89 V~ ( :  - : )  ] v ~  I - ~ ( :  - : )  + 1 V,~ ( : )>  

Similarly we get 

<( : )  ] vyb [ ( :  - y %  = ~ 1/3 (v~ - v~) (9) 

and therefore 

((z2) i V I( x~ - y2)> = ~ i/~ [(v,b -- v,a) -- (v~b -- v~a)] . (10) 

The set of equations (6, 7, 10) are equivalent in form to the set (3, 4) of [12] 
except for the fact that  the ~ and ~: parameters  are not necessarily equal, as they 
would have been the same as in the case of functions with a spherical basis. 

4. Orbital Energy Differences 
As indicated, it is a consequence of the orthoaxiality of our chromophore tha t  

the orbitals making u basis for e q are not connected with those of basis t~z by  any 
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non-vanishing matr ix  elements of  our perturbation.  This circumstance makes it 
possible to define [12] a cubic average energy independent ly  within each of  these 
two groups of  orbitals. Calling these energies E e  and Et~ and defining E e  - Et2 
as LJ, in accordance with common usage for oetahedral  chromophores,  we get 

Ee - Et~ = A = �89 (Vo. + vo~ + Vob) + ~  ( v~  + v ~  + vab) - 

- w (v~  + v ~  + v.b) - ~ (v~,~ + v~,~ + v~,b) ( l l )  
1 :=~  ~ ~ ( v ~ i - - v ~ i ) - � 8 9  Z 2 ( v ~ - - v x i ) § 1 8 9  ~ 3 ( v a i - v x ~ . ) .  

For  v~ ---- vo,~ ( l i )  is equivalent  to eq. (6) of  [12]. 

Defining the arguments  of  these summations as d ~  with the appropriate  
sub-index 2 = ~, z or 5, we get* 

~ c ,  a, b i~c ,  a~ b g~c, a, b 

which for c = a = b defines a decomposit ion of ~ for a cubic complex into three 
t e r m s ,  

d = 3 ~ - - A , §  (~3) 

We shall now, using eqs. (6, 7, and 10), express the orbital energy differences 
and the non-diagonal element (within our five orbital basis) in terms of  our cubic 
average 3 and of  differences between d~/parameters .  We abbreviate (z ~ I V I z~> 
as Ez~ and use a similar nota t ion for the other diagonal one-electron energies. I n  
the expressions for those energy differences which involve the orbita]s Ez~ and 
Ex~-y~, (i2) is in t roduced by  adding its left-hand side and subtract ing its right- 
hand  side. Thus we obtain the expressions**, 

Ez~ - E ,  v = A § 

§ 

Ex~_y~ - E x v  = A --  

+ 

E z ,  - E x y  = 

(d~ -- d~) + ~ (d~ - dob) + 

(Ao~ -- a~) -- ~ (d~c -- A~b) + 

(14) 

Eyz - E x y  = �89 (d~c - z1~a) 

We have already ment ioned tha t  with the restriction vai = v x t  (i = a, b, c), ~J 

from our  definition (11, 12), is given b y  an  expression which is equivalent  to tha t  
which would have been obtained if  we had  been using zero order functions with 
a spherical basis. The rest f rom the expressions (14) has this proper ty  even wi thout  
the above restriction, provided it is remembered tha t  every A~ by  ( i i )  implicit ly 

* I t  should be noted that without loss of symmetry in the expressions, da~ might as well 
have been defined with the opposite sign. 

** When the two uppermost equations of (14) are compared it is noted that the sign of 
the x-contributions is the same, but that of the a-contributions is opposite. Even though 
each K-contribution is itself a difference, it is perhaps not unexpected that those marked 
are larger than those marked ~. I f  this is generally so, then the first and the second spin- 
allowed absorption bands of d a and d 6 systems, when their split components are labelled [12] 
by their symmetries in the holohe&'ized point group Deh will split hi such a way that their 
components occur in opposite order. 
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contains the vei and v~, ~ parameters.  This means tha t  all splittings of cubic energy 
levels will be described formally in the same way whether we use zero-order func- 
tions with a spherical or a cubic basis. 

5. The Parametrization of the Orbital Energy Differences 

The top equation of (i4) contains all the five independent parameters  occurring 
in the whole of (i4). These are made up by  zJ together with the expressions occur- 
ring in the parentheses, two a-parameters and two 7~-parameters. Five parameters  
is just the number required by  the most general ehromophore of D2h symmet ry  
[6 p. i97], one for each of the four independent energy differences and one for the 
nondiagonal element. So again we see the holohedrized symmetry  at its insidious 
restricting work. 

We shall consider a few examples of chromophorcs with higher symmetry.  
For V xa = V y  b we obtain the tetragonal situation where the symmetry  (or 

the holohedrized symmetry)  is Ddh.  In  this case the two a-parameters become 
equal, which makes the non-diagonal element vanish. Further the two 7~-para- 
meters become equal, and we are left with the three parameters required to deter- 
mine the three energy differences occurring in the Dab symmetry  group. I t  is of 
special interest to look at the energy difference Ex~-y2  - -  E z y  which, when the 
functions used have a spherical basis, would be equal to da  = Aoa - d.a ,  where 
zJa is the d pertaining to a cubic chromophore with V za = V y  a = V za. 

Here by  introducing (t2) into the second equation of (14), we get, writing now 
(t3) as 

A~ = Ao~ - A ~  + A ~ ,  (15) 

1 
Ex~-y~  - -  E z ~  = zJa + ~ A~c  - �89 A ~  (16) 

containing the expected &corrections. 
There is a special case of Dan symmet ry  tha t  we mention as a curiosity. I t  is the 

square planar ease which in addition to V xa ~ Vyb  has V zc = 0. Here the cubic 
average A may  be written as 

A 2 = g A a  = w [Aoa - zJ~a + Aoa] (t7) 

and our parameters may  be chosen as the three components of zla, the number  
being again in agreement with the symmetry  requirement. However, in this ease 
the similar consideration with functions of spherical basis results in zJ~a equal to 
zero, and thus leaves only two parameters:  the (x ~ -- y2) orbital is three times 
[14, Tab. t] as much perturbed as the (z ~) orbital. I t  should be realized tha t  the 
square planar case, at least if it t ruly is uncoordinated along the z-axis, is extremely 
far away from being cubic (and from being spherical) and therefore our five- 
orbital basis is likely to give a bad approximation even for parametrization of 
energy level positions. In  this case it is probably not irrelevant to include a totally 
symmetrical  orbital among our cubic-basis zero order functions. This would mean 
to add an orbital transforming as x u d- y~ + z ~ under O~ (corresponding, in the 
case where a spherical basis is used, to adding an s orbital to the d set). However, 
the addition of such an extra orbital will mean addition of one, two and three 
extra parameters  in the cases, cubic, tetragonal, and orthorhombic holohedrized 
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symmetry, respectively. I t  seems, at least at present, not possible to determine 
such parameters experimentally. 

6. Conclusion 
In  the present paper we have only been concerned with sum contributions 

from each Cartesian coordinate axis. I t  is not at all required, neither by the 
present t reatment  nor by the angular overlap model treatment [12], that  a halide, 
say, be attr ibuted the same parameters A~ independent of which ligand is situated 
trans to it. I t  is only the total perturbation contribution from each axis which 
effects our orbital energy differences. Recently, W ~ W O ~ T H  and PIrE~ [16] have 
proposed a spectral "trans effect" caused by some kind of interaction between 
ligands trans to each other. 

I f  the single ligand perturbation parameters were independent of the trans- 
ligand, the usually mentioned relation between the splittings occurring in corre- 
sponding trans and cis complexes (symmetry and holohedrized symmetry D~h, 
respectively) would in our treatment remain equally valid. 

Further, for d 8 and d e systems, the cubic parentage excited states of orbitally 
triple degeneracy are each split into a singlet and a doublet in such a way that,  for 
the first spin-allowed cubic absorption band, the diagonal energy of the trans 
doublet coincides with that  of the cis singlet, whereas for the second spin-allowed 
cubic band, the trans singlet and the cis doublet have the same diagonal energies. 
This means that  if  the ligand which gives rise to the name of trans or cis lies below 
the other ligand of the complex in the speetrochemical series (i.e. has a smaller A 
value), the low energy split component for the first cubic spin-allowed band will 
approximately coincide for the trans and cis complexes whereas if  it lies above, 
then it is the high energy split component which coincides. Actually the same 
statement seems, in genera], to be valid also for the second band [15] because the 
order of the sing]at and the doublet is reversed (see footnote to p. 170). 

On the other hand, if the single ligand parameters do depend on the trans- 
ligand, the connection between the positions of the split bands of cis and trans 
complexes will be loosened, whereas e.g. the splittings in mono(halido)-pentam- 
mine complexes will remain related in the usual way [12] to the corresponding cis 
bis (halido) -tetrammine complexes. 

In [12] it was pointed out that  the diagonal energies of the split components 
of the first cubic, spin-allowed absorption band, provided no trans-interactions 
were considered, depended only upon the A values of the ligands of the chromo- 
phore. This remains true here except for d-contributions. 

I f  the present parametrization is applied to experimental results on energy 
level positions [lg], the d-contributions are found to be so small that  they probably 
cannot be considered physically significant in view of the unpermitted assumptions 
of the present treatment. Small d-contributions, on the other hand, make the 
formal parametric description of orthoaxial chromophores provided by the 
angular overlap model [11, 12, 16, 17] and by the electrostatic model [1, 3] remain 
applicable. 

Finally, we may say that  the present ligand field treatment provides further 
support for the idea that  the success of such approaches is connected with the 
fact that  their results essentially are derived on the basis of symmetry arguments. 
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